Paediatric ECG Interpretation

CHECK CALIBRATION

Lead position matches machine diagram Vertical 1mm/10mV Horizontal 25mm/sec

Anna McCorquodale

Rate Calculation
Regular - 300/(no. large
squares between R-R)
Note if irregular

7 Rhythm

Assess in rhythm strip (lead II),

1 small square = 0.04 sec

Normal sinus rhythm:

- P wave before each QRS
- Normal P wave morphology
- Normal P wave axis (upright II, III, aVF)
- Normal PR interval
- Appropriate rate for age

QRS Axis

Use vector addition plotting arrows along lead I (positive to right) and aVF (positive downwards)

0-90° normal 1-8 years. Mild LAD (-30°) normal puberty- adulthood. RAD 90-180° normal <1 year

🔼 P Wave

Amplitude <3mm <2 year 0.08-0.16 2-15 years 0.08-0.2 >15 years 0.12-0.2

Tall - P pulmonale - RA dilatation Bifid & wide - P mitrale - LA dilatation

ST SegmentST should be isoelectric

6 отс

QTc = QT/ $\sqrt{\text{(preceeding RR)}}$ 0-6m - variable - max 0.46 secs >6m - < 0.45 secs

7 QRS Complex

Duration increases with age and bradycardia Max duration usually 0.12 secs during childhood Bundle branch block – prolonged QRS duration and interruption in flow of R/S waves Partial BBB (i.e. without QRS prolongation) normal finding

In BBB look for the pattern:

Then look at complex height across the chest leads:

Tall complexes V1-V3 - ?RVH Tall V4-V6 complexes - ?LVH

T Wave

Physiological inversion V1-V3 after birth Return to upright in reverse order during childhood, persisting inversion of V1 normal variant
Check if very tall/peaked, broad and flat, abnormally inverted or bifid
U wave normal if bradycardic, should be same orientation as T wave